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The McMillan-Mayer solution theory is ideally suited for a rigorous discussion of systems in which at least one species, 
although present on both sides of a membrane, has different electrochemical potentials on the two sides. Examples are 
active transport across biological membranes and protein (or other macromolecular) solutions in which the protein molecule 
cannot pass through the separating membrane. The theory is developed in this paper for a single such "non-equilibrium" 
species. The same problem is also discussed approximately using the classical Donnan method. If point charges and the 
Debye-Hiickel potential of average force are used in the McMillan-Mayer theory, the two methods give the same results 
for leading terms (because they both take into account electrical neutrality). Generally speaking, however, the McMillan-
Mayer method has the distinct advantage, aside from rigor, of not being restricted to small concentrations of the "non-equi­
librium" species. As far as protein (or macromolecular) solutions are concerned, the theoretical considerations outlined 
here suggest (1) a means of acquiring information about protein-protein interactions at finite protein concentrations, (2) 
a possible new osmotic method for molecular weight determinations, and (3) a procedure to obtain drr/dp and d V / d p 2 as 
well as x(p) from osmotic measurements, where w = osmotic pressure and p = concentration. 

I. Introduction 
The object of this paper is to discuss two further 

applications of the McMillan-Mayer solution 
theory1: (1) the osmotic pressure across a mem­
brane when protein (or other non-diffusible species) 
is present on both sides of the membrane but at 
different concentrations; and (2) the osmotic pres­
sure which accompanies the non-equilibrium distri­
bution of an ion with respect to the two sides of a 
membrane engaged in active transport of the ion. 
In previous papers we have applied the McMillan-
Mayer theory to the binding of ions or molecules on 
protein or other large molecules,2 and to the Don-
nan membrane equilibrium.3 

The McMillan-Mayer theory is ideally suited 
for a rigorous statistical mechanical discussion of 
the pressure difference across a membrane when 
one or more species have different electrochemical 
potentials on the two sides of the membrane. A 
special case is the usual situation1,3 in which a non-
diffusible species is present on one side of a mem­
brane but is completely absent on the other side. 
In the applications of interest here, however, a cer­
tain species is present but has different electrochem­
ical potentials on the two sides of the membrane, 
either (1) because the species cannot pass through 
the membrane or (2) because the membrane does 
work to maintain the electrochemical potential 
difference. The theory, to be outlined below, is 
formally the same in the two cases. 

We confine ourselves in the present paper to the 
essential features of the problem, considering the 
case in which there is only one species with an elec­
trochemical potential difference across the mem­
brane. The biologically important situation in 
which there are two or more such species (e.g., two 
proteins, one protein and one actively transported 
ion, or two "active" ions) and other extensions4 of 
the theory will be reserved for part II. 

II. Analysis 
Let the activity of the stli molecular or ionic spe­

cies on one side of a membrane be za and on the 
(1) W. G. McMillan and J. E. Mayer, / . Chem. Phys., 13, 276 

(1943). 
(2) T. L. Hill, ibid., 23, 623, 2270 (1955). 
(3) T. L. Hill, ibid., 22, 1251 (1954); Faraday Soc. Discussion on 

Membranes, 1956. 
(4) Compare, for example, reference 3. 

other ss*, where zs is proportional to e*"/kT (ju8 = 
electrochemical potential) with proportionality 
constant such that Z3 = ps in a perfect gas at zero 
electrostatic potential (ip), where p8 is the number 
density or concentration. The activity coefficient YS 
is defined as zs/ pa, and therefore includes a contribu­
tion from the potential \p, if it is non-zero. We let 
z and z* represent the activity sets zh Z2, • • • and 
Z1*, Z2*, . . ., respectively. A set of m\ molecules or 
ions of species 1, m2 of species 2, etc., is denoted by 
m and the coordinates of this set by {mj. The co­
ordinates of the i-th molecule of species s are repre­
sented by (2,). Then we have the general relation 
for the pressure difference across the membrane,1'6 

expressed as a power series in the quantities (zs — 

m S [/>(«) - Kz*)] vi 
e x p I k T S 

• .5.[Hi(^)-]/- [-

where w(m'(z*) is the potential of the average force 
between molecules of the set m at the activity set 
z*. This type of expansion is clearly particularly 
appropriate for the problem at hand. 

Now suppose all species have the same electro­
chemical potential on the two sides of the membrane 
except species \:z\ -^ z*, Z2 = Z2, Z3 = z*, etc. If 
we drop the subscript on species 1 (and refer to this 
species from now on as the "solute" species), eq. 1 
becomes 

\[p(z) - p(z*)] V) v ! fz ~ z*\m r T 
e X P) kf f -£,m\\—-) / e X P L -

^KlM^Tj d W (2) 

where here z = z, Z2, z£, . . . and z* = z*, Z2, z*, . . . 
and the sum is over sets of solute molecules only. 
In the conventional osmotic pressure case s* = 0. 

On taking the logarithm of eq. 2, expanding in 
powers of (z — z*)/y*, and using the thermody­
namic relation 

p- - (m^) (3) 
(5) T. L. Hill, "Statistical Mechanics," McGraw-Hill Book Co., 

New York, N. Y., 1956. See eq. 40.62. 
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we ob ta in 1 ' 6 

a n d 
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w h e r e 

n = p{z) - p(z*) 

1! Vb1 = Z1 = F; J1 = 1 
2! F62 = Z2 - Z\ 
ZWb1 = Zi- 3Z1Z, + 2Z\ 
4! Vh = Z1- AZ1Z, - 3Zl+ 12ZlZ2 ~ 6Zf, etc. 

a n d 

K'('»)(z*)~ Zm(z*) = y exp 

I n v e r s i o n of eq . 5 gives1 '1 

kT 
^ ] d|m> 

^ p - P * = S 0 j (z*) (p - ^ p * ) ' 
y i > 1 v T / 

w h e r e 

-26» Qi = 1, a-i 

a-i = — 3b3 + 861 
Q4 = - 4 6 4 + 306263 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

a n d 

A = 262 

ft = 363 - 661 
A = 464 - 246263 + (80/3)61, etc. (13) 

E q u a t i o n s 4 a n d 11 g ive a l t e r n a t i v e e x a c t expres ­
s ions for t h e o s m o t i c p r e s s u r e II in t e r m s of t h e po­
t e n t i a l s of a v e r a g e force w ( m ) (z*) , t h e c o n c e n t r a ­
t i o n s p a n d p*, a n d t h e a c t i v i t y coefficient r a t i o y* [ 
y. H o w e v e r , 7 * / 7 is itself a f u n c t i o n of w{m) (z*) , 
p a n d p*. 

A l t h o u g h eq. 4 a n d 11 a r e t h e m o s t e l e g a n t w a y s 
of e x p a n d i n g Tl/kT, i t is a lso poss ib le t o expres s I I / 
kT in t h e m o r e p r a c t i c a l fo rm of a n e x p a n s i o n in 
p o w e r s of p — p* f rom w h i c h 7 * / 7 h a s b e e n e l imi­
n a t e d . T o d o th i s , we beg in b y m u l t i p l y i n g eq. 9 
b y 7 * / 7 

21 
7 

f 

i > 1 J > 2 

= 1 + 262f + (363 - 441 )r2 • (464 - 186263 + 
166!)f» + • • • 

w h e r e 

4065, etc. f = P P 
7 

N o w we m u l t i p l y eq . 14 b y — p*, a d d p t o b o t h s ides , a n d o b t a i n 

P - P* = (1 + 262P*)f + (363 - 4&I)p*f2 + (464 - 186263 + 166I)p*f3 + 

T h e i n v e r s e of eq . 16 is 

r = 1 + 262p: + 
p*(461 - 36 3 ) (P -

(1 + 262P*)3 + 
p*[186263 - 464 - 166^ + p * ( - 1 2 6 1 6 3 4 - 1 8 6 | - 8 6 2 6 4 ) ] ( p - p * ) 3 

(1 + 262P*)5 + 

(14) 

(15) 

(16) 

(17) 

S u b s t i t u t i o n of eq . 17 in eq . 11 t h e n g ives 

[ - 6, + P*(26| - 3&8)](p -n 
kT 1 + 262, + (1 4- 262P*)3 

[462
2 - 263 + p * ( - 4 6 4 Sb3

2 + 166263) + p*^(1861 - 86264 - 862
263)](p - p*y 

(1 + 262p*)s 

w h i c h is t h e r e q u i r e d r e su l t . Also, s u b s t i t u t i o n of eq . 17 in eq . 14 or 15 l eads t o 

7 ' , z o ^ p - p-) (60Z - 461)(p - p*) 2 

+ (18) 

_ = 1 -j- 2 ^ ( P ~ P*) , (§&i 
T 1 4- 262P* "•" (1 + 262P* 

+ 
[464 - 1862&3 + 166j + P*(86 26 4 - 1861 + 126g63)](p - P*)* 

(1 + 262p*)5 + 
or t o 

w h e r e , f rom eq. 19 

I11 2l = ^ ' ( P 

7 1 + 262p 

- * = l n '_ = l n El + l n 21 
kT 

P * ) + ( f t . P* ) 2 

(1 4- 262P*)3 

+ 
{A '264 + (80/3)61 - 186j]p*+ (32/3)62

5p*2j(p - P*)3 

(1 + 2biP*f 

I t is of cou r se u n d e r s t o o d in eq. 1 4 - 2 1 t h a t t h e b/s a n d fo's al l refer t o t h e a c t i v i t y se t z*. 

+ 

(19) 

(20) 

(21) 

F i n a l l y , on s u b s t i t u t i n g eq . 9 in eq . 4, w e find 

n 7 
kf= " " 

w h e r e 

+ J2 Bn(z*)(p - ^ V Y (H) 
n >2 

|3„_ (12) 

(6) The argument is formally the same as that given in eqs. (37.91)-
(37.102) of reference 5 for a one-component gas {i.e., for the special 
case s* = z* = . . . = 0). 

E q u a t i o n s 18 a n d 20 give II a n d p.* — p. in t e r m s 
of t h e p r o p e r t i e s of t h e z* so lu t ion a n d of t h e con­
c e n t r a t i o n p of so lu t e on t h e o t h e r (z) s ide of t h e 
m e m b r a n e . H o w e v e r , n o o t h e r p r o p e r t i e s of t h e 
z s o l u t i o n a r e i n v o l v e d . F o r e x a m p l e , t h e m e m b r a n e 
p o t e n t i a l a n d t h e c o n c e n t r a t i o n s p2, p?„ • • . a r e n o t 
d i scussed . 

T o b e m o r e specific, II a n d p * — p. a re d e t e r m i n e d 
b y p, p* a n d t h e forces b e t w e e n so lu t e mo lecu l e s in 
t h e z* so lu t ion ( t h r o u g h t h e p o t e n t i a l s of a v e r a g e 
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force w(2)(z*),w(3>(z*), . . .). If these potentials are 
known or can be approximated, II and p.* — /* may 
be calculated. On the other hand, experimental 
measurement of II can provide information con­
cerning the M.,(m) (z *). I t should be emphasized tha t 
the potentials of average force here do not refer to 
the solute a t infinite dilution (as in the usual os­
motic pressure situation1 '3, p* = 0) bu t ra ther to 
the finite concentration p*. Also, the expansions in 
eq. 18 and 20 are not restricted to small values of p* 
since they have been developed in powers of p — 
P*. 

Suppose II is measured experimentally for a fixed 
z* solution (including p*) bu t different values of p. 
Then we see from eq. 18 tha t if the data are plotted 
with n / ( p — p*)kT as ordinate and p — p* as ab­
scissa, the intercept on the ordinate is [1 + 2b2(z*)-
p * ] _ 1 and the slope a t p — p* = 0 is 

- Hi*) + P*[2b,(z*y - 3&8(z*)] 
[1 + 2b2(z*)P*? {ZZ) 

In principle, if b2 is found from the intercept, J3 may 
then be deduced from the slope I t should be noted 
t ha t an extrapolation to p — p* = 0 is in general not 
required in order to find the intercept, for values of 
p can be chosen so t ha t II and p — p* take on both 
positive and negative values in the neighborhood of 
P ~ P* = 0. 

From the point of view of molecular theory, b2(z*) 
calculated from the intercept is related to w(2)(z*) 
through eq. 7 and 8. Explicitly 

2Vh = f e-»(!)/*rd(i)d(2) - F8 (23) 

Let the subscript x refer to spatial coordinates and 6 
to rotational (internal and external) coordinates.6 

Define the spatial potential of average force wx
(2) by 

e-w^/kT = f e-^
m/kTd(l)ed(2)s (24) 

Then 

2Vb, =f e-^m/kTA{l)A{2\ - F2 

or, finally 
r wxw{r, z*)~| 
L — k r — J 

h (z*) - 2^JT exp 1 > r2 Ar (25) 

where r is the distance between the centers of mass 
of two solute molecules. 

From the point of view of thermodynamics, the 
slope and intercept also have an obvious interpre­
tation. Define 

x (z) = p(z,z2*,z3*. • • •) - P(0,z2*,z3*, • • •) 

x(z*) = p(z*,z2*,z3*. • ••) - p(0,z2*,z3*, • • •) (26) 

T h a t is, these are conventional osmotic pressures. 
Then 

n = TT (Z) - TT(Z*) = P(Z) ~ P (Z*) 

If we expand r{p) in a Taylor series about p = p*, 
we have 

n = x(P) - T(P*) <> - »->(!f> 
<--'-KC 

+ 
+ 

Comparison with eq. 18 yields 

1 
intercept 1 + 2b2 (z*)P* 

kT\i>p 
If^) 

= P*, T, zi*, si*, . . 

(27) 

(28) 

P^ / & A 
kT\dp)p=P*, T, si* 

and 

slope eq. 22 2kT\dPyP = p*, T, si*, Za* 

(29) 

(30) 

where7 eq. 29 follows from thermodynamics or from 
eq. 20. Thus a single measurement in the con­
ventional osmotic system p*|0 (vertical line = 
membrane) gives 7r(p*) while the intercept in the 
plot described above for the osmotic system p*|p 
provides d r / d p and the slope b2w/dp2, both a t p = 
P*. 

I t seems quite possible tha t measurement of II 
in the osmotic system p* j p may furnish a more ac­
curate, though more elaborate, method of molecular 
weight determination than use of the conventional 
system p*|0. Thus, suppose the intercept in eq. 2S 
(using now the weight concentration c instead of the 
number concentration p) is obtained for several 
values of c*. Then a plot of intercept versus c*, 
extrapolated to c* = 0, will itself give an intercept 
which is 

RT\dc)c = o M 
(31) 

where M is the molecular weight. 
When p and p* are both small, expansions of II 

and 7 * / Y in powers of p and p* are of interest. We 
find, from eq. 18 

n 
kT 

= p - p* + B2(p P*)(P + P*) +(t °*)(B3p* + 

b3pp* + b3P*') + (p - p*)lBiPz + (2b, - B4 

— bip — hp + (32) 

and from eq. 19 

7 -^- = 1 + 2b2(P 
7 

ibl)p - Shp*} + (p -
(Sb4 + 18b2b3 -

P*) + (P - P*)[(36, 

P*)[(46. ISMs + 16JDP2 + 
«1 + (33) 

In both of these equations, the B„'s and b/s are 
evaluated a t z* (and are therefore themselves func­
tions of p*). 

Donnan Method.—We supplement the above 
discussion by a simple and approximate t rea tment 
of the same problem using the method of Don-
nan.3 Let the z* side of the system contain an elec­
trolyte solution, the j - t h species of which has a val­
ence qj and a concentration pj*. In addition, on 
this side, is solute with valence q and concentration 
p*. On the other (z) side the j-th. species has a 
concentration pj and the solute a concentration p. 
Let M> = \p(z) — 4>(z*) be the membrane potential. 
Assuming the solutions are dilute and all ions are 
point charges (so pV terms can be ignored), we 
have, from the equality of electrochemical poten­
tials on the two sides of the membrane 

( - yii ) (34) 

where y = e^/kT and e = !electronic charge) 
We also have the neutrali ty conditions 

JJ1 pi*qi + p*q = 0 (35) 

(7) The relation between the "cluster integral" bz and bir/bp has 
been derived previously by Kirkwood and Buff from fluctuation theory: 
J. G. Kirkwood and F. P. Buff, / . Chem. Phys., 19, 774 (1951). See 
also eq. 25 above and eq. 21.4 and 40.45 of ref. 5. 
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and 
T PiIi + pq = 0 (36) 

The osmotic pressure is 

fr = ( ? » ' + » ) - ( ? " * + ' 0 <»" 
Using eq. 34 and 35 we find 

T1Pi = H p'* + yp*i + ^y2T w v + • • • 

so that 

P=, = p - p* + yP*q +^y2T P>*<1:2 • 
j 

Substitution of eq. 34 in eq. 36 leads to 

kT TP>*^ + 

(38) 

(39) 

(40) 

Finally, if we pu t eq. 39 in eq. 38 
n _ g ' ( P - P*)(p + p*) 

*2 ^Tp'q' 
3 

Expansion in powers of p and p* is appropriate here 
because the solutions are assumed dilute. 

III. Discussion 
For approximate numerical purposes, the pres­

sure difference II for a system p*|p, as in active 
transport, might be computed from the leading term 
in eq. 18. For example, if we treat all ions as point 
charges and use the Debye-Hiickel wx

(2)(z*) in eq. 25 

e-wxm/kT - 1 = - — - + . . . 
kT ^ 

2«2g-«-_ q'e'e 
~ 'WrkT + 

where 

Then 

and 

i " Y T PiI? + P*92\ 

DkT 

b, (z*) 
i(T « v + p*?2) 

(P - P*) 

kT 

(T Pi*9? + p V ) 

T w v 
Also, from eq. 21 

l n T! = _ qH_P ^ P ! ) 

E, 

(41) 

(42) 

(43) 

(44) 

(45) 

For comparison with the Donnan results above, 
we use eq. 32 and 43 and retain only quadratic 
terms in p and p* (noting t ha t p* occurs in &2)-
The result is identical with eq. 40. The expression 
for 7 * / Y m e c l ' 45 is already in the form of an ex­
pansion in powers of p and p* (to linear terms). 
Equation 45 is consistent with the leading Donnan 
term in eq. 39 since, as we have already pointed out, 
7* /7 includes the contribution of the potentials 
\p(z) and \ff(z*). Thus, with this simplest of models, 
the McMil lan-Mayer method, using the Debye -
Hiickel potential of average force, gives leading 
terms which agree with those of the Donnan method, 
calculated without employment of the Debye-Hiickel 
theory. As we have shown elsewhere,3 the basic 
reason for this agreement is t ha t both methods take 
electrical neutrali ty into account properly. 

In treating the system3 p*|0, both McMi l lan-
Mayer and Donnan methods use expansions in 
powers of p*. In the present application, however, 
the McMil lan-Mayer method has a distinct ad­
vantage in that , as remarked above, p* need not be 
small, since expansions in power of p — p* are 
available. On the other hand, although in principle 
the Donnan method could be made rigorous for any 
p*, in its present state of development and for prac­
tical purposes it is restricted to expansions in pow­
ers of p and p*. 

Appendix 
We wish to point out here that , in addition to eq. 

1, another general equation exists which might also 
find use in studies on systems of the type under 
discussion. This equation for II has the advantage 
of not being an expansion bu t the disadvantages of 
being approximate, in general, and of involving, 
relatively inextricably, the properties of the z solu­
tion as well as the z* solution. If we make the 
so-called superposition approximation for the z* 
state, tha t is, t ha t 

a < m ) ( 2 * ) _ S K ) ( D ( Z * ) = 2TO<2>(Z*) (46) 

where the first sum is over all molecules in the set m 
and the second sum is over all pairs of molecules in 
the set m, then8 

(8) See eq. 40.110 of ref. 5. 

P(Z) ~ P(Z*) = y> / _ 
kT • • ) 

/< 
b5 K-S-•)("-£» 6 Vk 

° ,s [Z >~-^--"-^Jd(I1)A(I. 
dr 

BBTHESDA, M D 

exp 

X 

(47) 


