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Osmotic Pressure, Protein Solutions and Active Transport. I

By TerreLL L. HILL
RECEIVED FEBRUARY 23, 1956

The McMillan-Mayer solution theory is ideally suited for a rigorous discussion of systems in which at least one species,
although present on both sides of a membrane, has different electrochemical potentials on the two sides. Exaniples are
active transport across biological membranes and protein (or other macromolecular) solutions in which the protein molecule
cannot pass through the separating membrane. The theory is developed in this paper for a single such “non-equilibrium”’
species. The same problem is also discussed approximately using the classical Donnan method. If point charges and the
Debye—Hiickel potential of average force are used in the McMillan-Mayer theory, the two methods give the same results
for leading terms (because they both take into account electrical neutrality). Generally speaking, however, the McMillan—
Mayer method has the distinct advantage, aside from rigor, of not being restricted to small concentrations of the “non-equi-
librium”’ species. As far as protein (or macromolecular) solutions are concerned, the theoretical considerations outlined
here suggest (1) a means of acquiring information about protein—protein interactions at finite protein concentrations, (2)
a possible new osmotic method for molecular weight determinations, and (3) a procedure to obtain 07/0p and 027 /dp? us

well as 7(p) from osmotic measurements, where = = osmnotic pressure and p = concentration.

I. Introduction

The object of this paper is to discuss two further
applications of the MecMillan—-Mayer solution
theory!: (1) the osmotic pressure across a mem-
brane when protein (or other non-diffusible species)
is present on both sides of the membrane but at
different concentrations; and (2) the osmotic pres-
sure which accompanies the non-equilibrium distri-
bution of an ion with respect to the two sides of a
membrane engaged in active transport of the ion.
In previous papers we have applied the McMillan—
Mayer theory to the binding of ions or molecules on
protein or other large molecules,? and to the Don-
nan membrane equilibrium.?

The McMillan-Mayer theory is ideally suited
for a rigorous statistical mechanical discussion of
the pressure difference across a membrane when
one or more species have different electrochemical
potentials on the two sides of the membrane. A
special case is the usual situation®3 in which a non-
diffusible species is present on one side of a mem-
brane but is completely absent on the other side.
In the applications of interest here, however, a cer-
tain species is present but has different electrochem-
ical potentials on the two sides of the membrane,
either (1) because the species cannot pass through
the membrane or (2) because the membrane does
work to maintain the electrochemical potential
difference. The theory, to be outlined below, is
formally the same in the two cases.

We confine ourselves in the present paper to the
essential features of the problem, considering the
case in which there is only one species with an elec-
trochemical potential difference across the mem-
brane. The biologically important situation in
which there are two or more such species (e.g., two
proteins, one protein and one actively transported
ion, or two ‘‘active’’ ions) and other extensions¢ of
the theory will be reserved for part II.

II. Analysis

Let the activity of the sth molecular or ionic spe-
cies on one side of a membrane be 2z; and on the

(1) W. G. McMillan and J. E. Mayer, J. Chem. Phys., 18, 276
(1945).

(2) T. L. Hill, sbid., 28, 623, 2270 (1935).

(3) T. L. Hill, ibid., 28, 1251 (1934); Faraday Soc. Discussion on
Membranes, 1956,

(4) Compare, for example, reference 3.

other z;*, where 2 is proportional to e~/*#T (u, =
electrochemical potentialg) with proportionality
constant such that g, = p, in a perfect gas at zero
electrostatic potential (¥), where p, is the number
density or concentration. Theactivity coeficient v;
is defined as 2/ ps, and therefore includes a contribu-
tion from the potential ¢, if it is non-zero. We let
z and z* represent the activity sets 2;, 2, . . . and
2%, 2%, . . ., respectively. A set of m; molecules or
ions of species 1, m, of species 2, etc., is denoted by
m and the codrdinates of this set by {m}. The co-
ordinates of the 7-th molecule of species s are repre-
sented by (¢,). Then we have the general relation
for the pressure difference across the membrane,!®
expressed as a power series in the quantities (g, —
38)/v¥

ylp(z) — pz¥)]V
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where %™ (z*) is the potential of the average force
between molecules of the set m at the activity set
z*  This type of expansion is clearly particularly
appropriate for the problem at hand.

Now suppose all species have the same electro-
chemical potential on the two sides of the membrane
except species 1:2) # 2{', 22 = 2F, 23 = 2§, ete. If
we drop the subscript on species 1 (and refer to this
species from now on as the “‘solute’ species), eq. 1
becomes

\p@) = pN V) 5 L (z_—;*)mfexp[_

exp

epf kT { _m>0m' Y
wm)({m}, z
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Whereherez=z,zi“,zé“,...andz* = z* 2F 25, ...

and the sum is over sets of solute molecules only.
In the conventional osmotic pressure case z* = 0.

On taking the loganthm of eq. 2, expandmg in
powers of (z — 2%)/v*, and using the thermody-
namic relation

p _ (Op/RT
z _( oz >T,zz,z:, (3)

McGraw—Hill Book Co.,

(6) T. L. Hilj,
New York, N. Y., 1956,

**Statistical Mechanics,"’
See eq. 40.62.
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we obtain®
I v j
a7 = 20 (Zo = o) (4)
kT = ! v*
and
—L**=Zb‘*'(—7 _*>j
P e & i(z%) ] v (5)
where
I = p(z) — p(z*) (6)
1! I/rbl = Zl = I/',' bl =1
20 Vby = Zy — Z3
3! Vb = Zy — 32,7y + 273
4 Vb, = Zy — 42,7y — 375 4 12232, — 62%, ete. (7)
and

Zn(z*) = S exp [M] d{m} (8)
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and
B = 2b,
B2 = 3b; — 603

Bs = 4by — 24bsbs 4+ (80/3)b%, etc. (13)

Equations 4 and 11 give alternative exact expres-
sions for the osmotic pressure II in terms of the po-
tentials of average force w (z*), the concentra-
tions p and p*, and the activity coefficient ratio v*/
v. However, v*/v is itself a function of w™ (z*%),
p and p*.

Although eq. 4 and 11 are the most elegant ways
of expanding II/£T, it is also possible to express II/
kT in the more practical form of an expansion in
powers of p — p* from which y*/y has been elimi-
nated. To do this, we begin by multiplying eq. 9
by v*/v

kT
Inversion of eq. 5 givess LA S =
.0 g ) ' v Zaifi 1+ Z a1
Zo—o = Yaa(r-Lr) @ 31 >
v iz1 v = 1+ 2b¢ + (30, — 408)¢? — (4by — 18babs+
where 1665)¢% + « -+ (14)
a =1, a0, = —2bs where
a; = —3b; + 83 (10) R 5
0y = —4bs + 30bibs — 400}, ete, f=p= (15)
Now we multiply eq. 14 by — p*, add p to both sides, and obtain
p— p* = (14 2bap*)¢ + (3b; — 463)p*¢? + (4bs — 18babs + 1683)p*¢s + - - - (16)
The inverse of eq. 16 is
=t p* p*(4b] — 3bs)(p — p*)2+ p*[18bybs — 4by — 160} + p*(—12b3bs + 183 — 8bebs)](p — p*)3 oD
1 4+ 2byp* (1 + 2byp*)3 (1 4 2byp*)®
Substitution of eq. 17 in eq. 11 then gives
o _ p—p* [— by + p*(285 — 3by)](p — p*)?
ET 1 4 2byp* (1 4 2byp*)3
[468 — 2b; + p*(—4by — 8b] + 16bwbs) + p*¥(186; — 8bsbs — 8b:%:)](p — p*)? i
+ (1 + 2bp%% + - (18)
which is the required result. Also, substitution of eq. 17 in eq. 14 or 15 leads to
v* 1+ 2ba(p — p*) | (3by — 485)(p — p*)?
v 1+ 2byp* (1 + 2b,p*)°
[4[74 — 18bobs + 16[)3 + p*(8b2b4 - 18[73 + 12531’3)](/7 - P*)3 L.
+ (1 + 2b2p*)5 =+ (19)
or to
[l U S x*
BT —InZ —Inp—}—ln (20)
where, from eq. 19
X o Bl = p*) (B = 4b80")(p — p*)?
1 + 200" (1 + 2b2p™)*
4 1B+ [8bady + (80/8)b; — 18b3]p* + (32/3)b3p*2}(p — p*)? + o (21

(1 + 2byp*)

It is of course understood in eq. 14-21 that the b;'s and 8,’s all refer to the activity set z*.

Finally, on substituting eq. 9 in eq. 4, we find

I * ) * n
PSP 7—7 p* 4+ > Bn(Z*)(P - 77/?*) (11)
nz22

where
-

~ 5., (12)

B, = —

(6) The argument is formally the same as that given in eqs. (37.91)—
(37.102) of reference 5 for a one-compomnent gas (i.c., for the special
case gt = zF = ... = 0).

Equations 18 and 20 give IT and u* — u in terms
of the properties of the z* solution and of the con-
centration p of solute on the other (z) side of the
membrane. However, no other properties of the
z solution are involved. For example, the membraue
potential and the concentrations ps, ps;, . . . are not
discussed.

To be more specific, IT and u* — u are determined
by p, p* and the forces between solute molecules in
the z* solution (through the potentials of average
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force w®(z*), w'®(z*), ...). If these potentials are
known or can be approximated, IT and u* — u may
be calculated. On the other hand, experimental
measurement of II can provide information con-
cerning the % (z*). Itshould be emphasized that
the potentials of average force here do #nof refer to
the solute at infinite dilution (as in the usual os-
motic pressure situation®3, p* = 0) but rather to
the finite concentration p*. Also, the expansions in
eq. 18 and 20 are not restricted to small values of p*
since they have been developed in powers of p —
p*.
Suppose II is measured experimentally for a fixed
z* solution (including p*) but different values of p.
Then we see from eq. 18 that if the data are plotted
with II/(p — p*)k&T as ordinate and p — p* as ab-
scissa, the intercept on the ordinate is [1 + 2b,(z%)-
p*] 1and the slopeat p — p* = 01is
— ba(z%) + p*[20:(z%)% — 3bs(z*)]
[1 4+ 2b(z*)p*]

In principle, if &, is found from the intercept, &3 may
then be deduced from the slope It should be noted
that an extrapolation to p — p* = 01isin general not
required in order to find the intercept, for values of
p can be chosen so that Il and p — p* take on both
positive and negative values in the neighborhood of
p—p*=0

From the point of view of molecular theory, 5(z*)
calculated from the intercept is related to w?(z*)
through eq. 7 and 8.  Explicitly

2Vh, = S e 2®/RTd(1)d(2) — V2 (23)
Let the subscript x refer to spatial codrdinates and 8

to rotational (internal and external) codrdinates.®
Define the spatial potential of average force wx® by

emuxD/kT = f ¢~us®/kTd(1)pd(2)s (24)

(22)

Then
2Vhy = f emws®/RTd(1):d(2)x — V2
or, finally

by (z%) = 27rf0°°§exp [— %1 — 1:»r2dr (25)

where 7 is the distance between the centers of mass
of two solute molecules.

From the point of view of thermodynamics, the
slope and intercept also have an obvious interpre-
tation. Define

w(z) = plazm*z* ) — p(0,:%z* )

w(z*) = pla*a%2*, 1) — p(Om* 5% - )  (26)
That is, these are conventional osmotic pressures.
Then

T = r(z) — =(z*) = p(z) — p (z%)
If we expand 7(p) in a Taylor series about p = p¥,
we have

H=r() = me) = (o = 2(3T) 4

1 o2
56— o(3E) L+ @
Comparison with eq. 18 yields
. .
intercept = 1F 2, (z*)p* =
1/or
ﬁ(b_P) =p*, T, a2%, za%, ... (28)
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-2 %)
kT(aP p=p*, T, 25% 2%, . .. (29)

and

slope = eq. 22 = (30)

1 /0%

2/7‘ (D_;ﬂ)p =p% T, z2%, 2%, .. .
where? eq. 29 follows from thermodynamics or from
eq. 20. Thus a single measurement in the con-
ventional osmotic system p*|0 (vertical line =
membrane) gives w(p*) while the intercept in the
plot described above for the osmotic system p*|p
provides Ow/dp and the slope d2r/dp?, both at p =
o™

It seems quite possible that measurement of II
in the osmotic system p*|p may furnish a more ac-
curate, though more elaborate, method of molecular
weight determination than use of the conventional
system p*|0. Thus, suppose the intercept in eq. 28
(using now the weight concentration ¢ instead of the
number concentration p) is obtained for several
values of ¢*. Then a plot of intercept versus c*,
extrapolated to ¢* = 0, will itself give an intercept

which is
1 (ﬁ) -l
RT\ oc c=0 - M

where 1/ is the molecular weight.

When p and p* are both small, expansions of II
and v*/v in powers of p and p* are of interest. We
find, from eq. 18

%IT =p = p*+ Bulp — p*)p + p*) +(p — p*)(Bsp? +

bspp* + bsp*?) + (p — p*)[Bap® + (2bs — By —
8b3)p20* — bipp*? — bip*?] + - - -

and from eq. 19

(31)

(32)

*
77 =1+ 2b(p — p*) + (p — p)(3b; —

4b3)p — 3bsp*] + (o — p*)[(4bs — 18bsbs + 1683)p% +
(—8by 4 18bab; — 8b)pp* + 4b.p*?2] + ... (33)

In both of these equations, the B,’s and ;s are
evaluated at z* (and are therefore themselves func-
tions of p*).

Donnan Method.—We supplement the above
discussion by a simple and approximate treatment
of the same problem using the method of Don-
nan.® Let the z* side of the system contain an elec-
trolyte solution, the j-th species of which has a val-
ence ¢; and a concentration p;*. In addition, on
this side, is solute with valence ¢ and concentration
p*. On the other (z) side the j-th species has a
concentration p; and the solute a concentration p.
Let ¥ = y(z) — ¢(z*) be the membrane potential.
Assuming the solutions are dilute and all {ons are
point charges (so pV terms can be ignored), we
have, from the equality of electrochemical poten-
tials on the two sides of the membrane

1
pi = pi*eTyq = pi* (1 - Y+ 5t > (34)

where y = e¥/kT and e = |electronic charge|
We also have the neutrality conditions

> pi*gi+e*g=0 (35)
7

(7) The relation between the *‘cluster integral'’ b2 and d#/dp has
been derived previously by Kirkwood and Buff from fluctuation theory:
J. G. Kirkwood and F. P. Buff, J. Chem. Phys., 19, 774 (1951). See
also eq. 25 above and eq. 21.4 and 40.45 of ref. 5.
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and
Z pigi + pg =0 (36)
7
The osmotic pressure is
E = i+ — .I* + p* 7
= (Fote) - () e
Using eq. 34 and 35 we find
2oei =200t yete + 1523 ettt
i i 2
so that
I * ® 1 2 * ;
sp =P = Pt ete g X ettt (38)
J
Substitution of eq. 34 in eq. 36 leads to
_v (o= p%)
TR o
Finally, if we put eq. 39 in eq. 38
I _, _}.M"}'_P_).}.... (40)

k ‘)ZPJ g;®

Expansion in powers of p and p* is appropriate here
because the solutions are assumed dilute.

III. Discussion

For approximate numerical purposes, the pres-
sure difference II for a system p*|p, as in active
transport, might be computed from the leading term
in eq. 18 For example, if we treat all ions as point
charges and use the Debye-Hiickel 10,(?(z¥) ineq. 25

(@
~u®/ET — 1 = — X
ey (2] 1 Y
220 k1
=~ 57 (41)
where
LT
K= DT (42)
Then
g2
by (2%) = — (43)
2(2 pi*qi® + p*q2>
j
and
- (p — p*)(z pi*g! + p*q2>
J
= = - (44)
kT Z pi¥q®
i
Also, from eq. 21
* 2 L —
In L -_ .Q_(P_B__) (45)

Y Z pi*g;?
J
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For comparison with the Donnan results above,
we use eq. 32 and 43 and retain only quadratic
terms in p and p* (noting that p* occurs in bs).
The result is identical with eq. 40. The expression
for v*/v in eq. 45 is already in the form of an ex-
pansion in powers of p and p* (to linear terms).
Equation 45 is consistent with the leading Donnan
term in eq. 39 since, as we have already pointed out,
v*/v includes the contribution of the potentials
¥(z) and ¢¥(z*). Thus, with this simplest of models,
the McMillan-Mayer method, using the Debye—
Hiickel potential of average force, gives leading
terms which agree with those of the Donnan method,
calculated without employment of the Debye-Hiickel
theory. As we have shown elsewhere,® the basic
reason for this agreement is that both methods take
electrical neutrality into account properly.

In treating the system?® p*|0, both McMillan—
Mayer and Donnan methods use expansions in
powers of p*. In the present application, however,
the McMillan—Mayer method has a distinct ad-
vantage in that, as remarked above, p* need not be
small, since expansions in power of p — p* are
available. On the other hand, although in principle
the Donnan method could be made rigorous for any
p*, in its present state of development and for prac-
tical purposes it is restricted to expansions in pow-
ers of p and p*.

Appendix

We wish to point out here that, in addition to eq.
1, another general equation exists which might also
find use in studies on systems of the type under
discussion. This equation for II has the advantage
of not being an expansion but the disadvantages of
being approximate, in general, and of involving,
relatively inextricably, the properties of the z solu-
tion as well as the z* solution. If we make the
so-called superposition approximation for the z*
state, that is, that

w(m)(z*) — Twh(z*) = Zwd(z*) (46)

where the first sum is over all molecules in the set m
and the second sum is over all pairs of molecules in
the set m, then®

(8) See eq. 40.110 of ref. 5.

p(z) — p(z7)

*
d = (e =)

N
T o))
6VkT}Y; ) ol Ps o Ps X
bw,s’(”(z*) _'L_U_EL(”(Z)] Al -
f [ 7 Jaanaant @
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